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UNSTEADY HEAT CONDUCTION OF A THIN ROD WITH A UNIFORMLY MOVING
FUSION BOUNDARY OR A THERMALLY INSULATED BOUNDARY
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A solution is obtained to the problem of unsteady heat conduction of

a semi-infinite thin rod, thermally insulated along its generators, or
a plate, with a uniformly moving fusion boundary, or a thermally in-
sulated boundary, The results are presented of a numerical calculation
for a copper rod with various rates of motion of the boundary.

We consider a semi-infinite thin rod thermally in-
sulated along its generators, a finite part, of length
a, being free from thermal insulation and having ther-
mal contact with the surrounding medium.

The following two conditions will be examined at
the moving end boundary:

1. The end boundary is fused by a moving heat
source proceeding along the rod with velocity u. The
fused material is carried away.

2. Removal of rod material from the end proceeds

with velocity u, and there are no heat fluxes at the end.

At the same time, the thermal insulation is broken
down at the same rate, so that the length of the un-
insulated part remains constant and equal to a. The
heat fluxes along a generator have intensity ¢, con-
stant with time. The last conditionexists, for example,
in the case when the part of the rod stripped of thermal

insulation is surrounded by a high-temperature medium,

while heat transfer is accomplished by radiation ac-
cording to the Stefan-Boltzmann law.
The heat conduction equations,
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may be written as follows in the system of coordinates
¢ = x — uT moving along with the fusion boundary:
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It is assumed that at any cross section the tem-
perature difference AT,(, 7) between the surface and

the axis of the thin rod is negligible in comparison
with the temperature Ty(£, 7) at the section.

The degree of accuracy of this assumption may be
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evaluated from the ratic , which is easily
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obtained from the heat balance equation on the rod sur-
face.
Applying a Laplace transformation with respect to
the variable T to the system (1), (2), and the boundary
and contact conditions (4), (5), we obtain
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The system (6), (7) has the following solution:
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1t follows from boundary conditions (8) that B = 0.
Satisfying the boundary and contact conditions, we
obtain
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The transforms F,(¢, ) and F,(£, s) have the fol-
lowing originals [1], respectively:
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The Laplace transformation has the following prop-
erty: if there is an original f,(r) for the transform
F(s), then for F(s)/s the original may be written in

the form f(v) = ffl(f‘))d@ {1].
0

Applying this to the transforms (12) and (13), and
using expressions (16) and (17), we obtain, after some
transformations, the solution of the original equations
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If the initial temperature is different from zero,
then for Ty(£, 7) and Ty(¢, ) we must understand T, (¢,
1) = Ty and Ty, 7) — Ty, respectively. It is not hard
to verify that T(¢, 1) and Ty(£, T)satisfy the initial
{(3), boundary (4), and contact (8) conditions.

For strictness, we must verify whether or not
Ty(, 1) and Ty(¢, 7) are solutions of the original equa-
tions (1) and (2).

Substituting (18) into the appropriate original equa~-
tion (1), we obtain
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If the solution Ty(¢, 7) obtained satisfies the cor-
responding equation (1), then the equality (20) must
be fulfilled identically for any + >0, § > 0.

Denoting the left part in (20) by &(¢, 7), and dif-
ferentiating it with respect to 7, we shall check the
existence of the identity
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The identity (21) must be satisfied for any 7> 0,
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i.e., expression (21) may be written in the form
DE, 1)=0.

Therefore, the expression obtained, (18), satisfies
the corresponding original equation (1). Proceeding
similarly, it may be verified that Ty, 7) is a soluticn
of (2).

The results of the numerical calculation of expres-
sions (18) and (19) for a copper rod cooled along a
generator are presented in Fig. 1.

If removal of material proceeds from the end of the
rod, while there is no heat flux through the moving end
boundary, then the equations of heat conduction in the
system of coordinates ¢ = x — ur, moving along with
the thermally insulated boundary, are written as fol~
lows:
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Fig. 1. Temperature of the rod with a) u = 2-10~2
and b) 8:1072 m/sec: 1) for 7= 0.01 sec; 2) 0.05;
3) 0.1; 4) 0.3; b, 6) steady temperature profiles with
T respectively 1.0 and 0.3 sec (T in °K, A in m),

Applying a Laplace transformation with respect to
the variable 7 to the system (22), (23), and to the
boundary and contact conditions (25), (26), we obtain
for the corresponding transforms the expressions
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The method of solution of the equations obtained is
similar to that examined above.

The final expressions for temperature T,(¢, 7) and
Ts(£, 7) have the following form:
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If the initial rod temperature is different from zero,
then for T(£, 7) and T,(£, 7) we must understand Ty(,
1) — Ty and Ty, 1) — Ty, respectively.

It is easy to verify that T(£, 1) and (T,(&, 7) satisfy
the original equations (22), (23), and the initial (24),
boundary (25), and contact (26) conditions.
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The results of numerical calculation for a copper
rod heated along a generator are presented in Fig. 2.
Solutions for similar problems with a plate may be
obtained by replacing the rod radius R by the plate
thickness 6 in expressions (18), (19), (31), and (32).
Numerical calculations were carried out for the fol-
lowing original data: R = 0.5-10%m, T, = 293° K, a=
=10"*m, u=2+10"% and 8.107% m/sec, at=0.97.107

m?/sec, T Tp =1853° K, A = 3.6 10°W/m - °K, q = T80
. 10* W/m?,

If the heat fluxes on the rod are realized by convec-
tion with heat transfer coefficient a = 4.0-10% W/m?
.°K, and if the temperature T« of the surrounding
medium is 2273 ° K, then, assuming negligible varia-
tion with time of the temperature drop T — Ty, T),
it may be assumed in (31) and (32) that q=c[Te
— Ty¢, )1 = (T, — Tg) = 80.0¢ 10 W/m?

The greatest deviation of the quantity T, — T2 (§, T)
from the initial temperature drop Tee — Ty, as may
be seen from Fig. 2, is 5% and 20% at velocities of
8-10~%and 2+ 10~ % m/sec, respectively,
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Fig. 2. Temperature of the rod with a) u = 2.10-?

and b) 8-10-% m/sec: 1) for T = 0.1 sec; 2) 0.2; 3)

0.4; 4) 0,8; 5, 6) steady temperature profiles with
T of 2.0 and 0.4 sec, respectively.

NOTATION

Ty(k, T)~temperature of thermally insulated part of rod; Ty (§, T)—
temperature of rod at section stripped of thermal insulation; g~heat
flux on unit lateral surface of rod; & —thermal diffusivity; A—thermal
conductivity; a—coefficient of heat transfer from surrounding medium
to rod; Ty —initial temperature of rod; Te—temperature of surrounding
medium; R—radius of rod; a—~length of part of rod free from thermal
insulation; u—rate of displacement of -boundary; T¢—fusion tempera-
ture of rod.
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